Chemical Additives to Optimize Black Liquor Recovery Throughput and Increase Campaign Life

Ian Saratovsky, PhD
Scott Bohlen
Chris Smyrniotis
Heng Wang
Agenda

• Deposit formation in black liquor recovery boilers
 – Fate of black liquor droplets
 – Composition of carryover and deposits
 – Deposition mechanism

• Chemical additives
 – What are they?
 – Targeted application
 – Operation mechanism

• Case study
 – Twenty years of continuous operation
 ○ Supporting mechanical upgrades with chemical additives
Fate of Black Liquor Droplets

Recovery Boiler Fouling Causes

More Particles
- Firing load
- Particle size
- Particle density
- Gas velocity

Stickier Particles
- Chloride content
- Potassium content
- Sulfide content
- Temperature

Poor Sootblowing Efficiency
- Jet PIP (force)
- Deposit strength
- Blowing frequency

Load is the most important variable affecting fouling!

Reference: Tran, H. 2015 TAPPI Kraft Black Liquor Recovery Course Lecture Notes
Melting Characteristics of Deposits

- Melting temperature between 825 °C (1517 °F) and 885 °C (1625 °F)
 - NaCl and KCl depress the melting point (e.g. fluxing agent) to 626 °C (1159 °F), plasticizing agents
- Partially molten (i.e. “sticky”) inorganic salts condense on cooler heat transfer surfaces
 - As deposit grows, leading edge approaches surrounding gas temperature
 - Leading edge can be “sticky,” adhering additional particles and carryover
- Deposits sinter into dense masses at $T > 450$ °C
Deposit Removal

- Motive force is critical to deposit removal
 - Sootblowers, sonic horns, impulse cleaners, etc.

- Sootblowers are often ineffective when:
 - Deposits sinter into dense masses
 - Deposits are above their fluid or plastic temperatures

- Chemical additives alter deposit physical characteristics
 - Microscopic: pore structure, local melting temperature
 - Macroscopic: pore structure, compression strength
Modification of Deposit Physical Properties

• Addition of Mg(OH)$_2$ modifies deposit pore structure
 - Untreated deposits contain numerous small pores with thick walls
 - Treated deposits contain larger pores with thinner walls in between adjacent pores
Modification of Deposit Physical Properties

- Microscopic-scale phenomena impact bulk properties
 - Force required to break sintered pellet decreases with increasing additive dose
Targeted Application
Targeted Program Application

Gas Flow Dynamics

Prediction of Problem Areas

Targeted Mg(OH)$_2$ Application
Chemical Coverage in Problem Areas

Coverage Entering Generating Bank – Dosage: 0.9 lb/ton
Fuel Case: Softwood
Solids Firing: 4.1MMlb/D

6 injector array
8 injector array
Optimized array
RECOVERY-CHEM® Recovery Boiler Technology

Program Application:

• The chemical program is injected into the fireside of the boiler at specific locations based on Fuel Tech’s CFD model of the boiler.
Chemical Injection Technology

- Tunable droplet size characteristics
 - Fine mist for rapid evaporation and activation of Mg(OH)$_2$ particles
Case Study
Baseline Data (1995) – Without RECOVERY-CHEM

Average dry solids = 3.2 million lbs/day

7 days to shutdown
24 days to shutdown

Generating Bank dP (in. water gauge)
Treatment Extends Campaign Life

The graph illustrates the impact of treatment on the campaign life of a generating bank. The horizontal lines represent the baseline (no additive) and the additive injection scenarios. The vertical arrows indicate thermal shed events. The graph shows a significant extension in campaign life when additive injection is used, comparing to the baseline scenario which required 7 days to shutdown. With additive injection, the campaign lasted for 24 days before reaching the shutdown threshold.
Run 3

Generating Bank dP (in. water gauge)

7 days to shutdown

24 days to shutdown

Average dry solids = 3.2 million lbs/day
Dosage Optimization Trials: Fine Tuning
Dosage Optimization Trials: Fine Tuning

![Graph showing dosage optimization trials over time with varying levels of normal dosage and deviations](image)
Dosage Optimization Trials: Reversal

- dP increase can be reversed with increased chemical injection
Increased Campaign Life

- 11 month run completed with 4.07 MM lbs/day of BL dry solids firing
Summary

• Sodium salts in the recovery unit deposit on heat transfer surfaces and sinter at $T > 450 \, ^\circ\text{C} (842 \, ^\circ\text{F})$

• Sootblowers lose efficiency as deposits continue to grow and sinter

• Mg(OH)$_2$ injection reduces deposit strength
 - Sootblowers are more effective

• Mechanical upgrades to increase throughput greatly benefit from deposit control programs
 - Mechanical upgrades increase throughput
 - Chemical additives maintain a clean boiler to sustain increased throughput

• Twenty years of operating experience
 - Have increased campaign life from 60 days to 330 days
 - Decreased “chill and blow” frequency by 50%-75%
Thank you!

Ian Saratovsky, PhD
isaratovsky@ftek.com
(630) 845-4551