October, 2018

ESP FLUE GAS CONDITIONING AND BOILER SLAGGING CONTROL
FUEL TECH – COMPANY INFORMATION

- $60 - $80 MM Annual Revenue
 - 20+ Years in Operation
- Publicly Traded on the NASDAQ (FTEK)
- Offices
 - Warrenville, IL – Project Management, Financial, and Corporate Office
 - Durham, NC – SCR Project Management, Process and Modeling
 - Westlake, OH – Particulate and FGC System Support
 - Beijing and Milan
- 150+ Employees Worldwide
- Financial Strength and Bonding Capabilities
GLOBAL PRESENCE

OFFICE LOCATIONS

COUNTRIES WHERE FUEL TECH DOES BUSINESS:
USA, Belgium, Canada, Chile, China, Columbia, Czech Republic, Denmark, Dominican Republic, Ecuador, France, Germany, India, Italy, Jamaica, Mexico, Poland, Portugal, Puerto Rico, Romania, South Korea, Spain, Taiwan, Turkey, United Kingdom, Venezuela, South Africa
BUSINESS SEGMENTS

Air Pollution Control (APC)

- NO$_x$ and Particulate Control solutions to meet current and upcoming regulatory mandates
- Over 900 systems installed worldwide
- Capital project sale, typically fixed price and often turn-key
- Performance-guarantee all work

FUEL CHEM®

- TIFI® Targeted In-Furnace Injection™ technology
- Boiler efficiency, slag and corrosion reduction, SO$_3$ abatement
- Focus is on clean, efficient energy and fuel flexibility
Electronic Precipitator (ESP) Performance Enhancement
Flue Gas Conditioning Technologies (FGC)
ESP UPGRADE DRIVERS

Utilities require ESP modifications for many reasons

More stringent emission regulation
- Reduce outlet particulate emissions / opacity
- Load restrictions / MW recovery

Increase ESP performance
- Change of operation or coals

Improve reliability
- Replace worn / outdated equipment
- Extend run time between forced outages
ESP PERFORMANCE UPGRADE OPTIONS

I. Mechanical Upgrade - Increasing Collection Area
- Add new fields in direction of flue gas flow
- Increase the height of collecting plates

II. Electrical Upgrade - Enhancing ESP Corona Power
- Add Rigid Discharge Electrode (RDE)
- Install Switch Mode Power Supply (SMPS) Units

III. Flue Gas Conditioning – Reducing Fly Ash Resistivity
- SO$_3$ Flue Gas Conditioning
- NH$_3$ Flue Gas Conditioning
- Dual (SO$_3$&NH$_3$) Flue Gas Conditioning
What Is SO3 Flue Gas Conditioning?

SO3 Flue Gas Conditioning (FGC) is the controlled injection of small quantities of sulfur trioxide into the flue gas stream, reducing the resistivity of the fly ash and permitting its collection in existing ESPs.

- Since 1972, there have been over seven hundred (700) FGC systems installed on a worldwide basis, representing approximately three hundred thousand (300,000) MWs of coal fired power generation

- SO$_3$ FGC has been applied to electrostatic precipitators as small as eighty (80) SCA (16 m2/m3/sec) and as large as eight hundred (800) SCA (157 m2/m3/sec)
MAJOR UTILITY END USERS
FGC SYSTEMS

- Duke Power
- TVA
- Southern Company
- AEP
- Detroit Edison
- Ameren
- PacifiCorp

- Ontario Power
- Hong Kong Electric
- China Light and Power
- China Shenhua Power
- Eskom
- Enel
- Electrabel
The efficiency associated with the removal of particles by an Electrostatic Precipitator is given by the Deutsch-Anderson equation

\[n = 1 - \frac{1}{e(\omega A/Q)} \]

Where:
- \(\eta \) = collection efficiency of the precipitator
- \(e \) = base of natural logarithm = 2.718
- \(w \) = migration velocity, cm/s (ft/sec)
- \(A \) = the effective collecting plate area of the precipitator, m\(^2\) (ft\(^2\))
- \(Q \) = gas flow through the precipitator, m\(^3\)/s (ft\(^3\)/sec)

Source: Deutsch 1922; Anderson 1924.

(\(\omega \) \(\uparrow \) \(\rightarrow \) \(n \) \(\uparrow \))

(A \(\uparrow \) \(\rightarrow \) \(n \) \(\uparrow \))

(Q \(\uparrow \) \(\rightarrow \) \(n \) \(\downarrow \))
MIGRATION VELOCITY VS. RESISTIVITY

The graph illustrates the relationship between migration velocity (w, cm/sec) and average resistivity at the ESP inlet (ohm-cm). The performance can be categorized as good or poor based on the resistivity values:

- **Good performance** is indicated by higher migration velocities, typically above 8 cm/sec, at resistivity values ranging from 10^6 to 10^9 ohm-cm.
- **Poor performance** is indicated by lower migration velocities, typically below 8 cm/sec, at resistivity values ranging from 10^{10} to 10^{13} ohm-cm.
FLY ASH RESISTIVITY VS. FLUE GAS TEMPERATURE

- Poor Performance
- Marginal Performance
- Good Performance

Resistivity (Ohm-cm)

GAS TEMPERATURE °F Increasing

- 0.5 to 1.0% Sulfur in Coal
- 1.0 to 2.0% Sulfur in Coal
- 2.0 to 4.0% Sulfur in Coal
FLY ASH RESISTIVITY VS. SULFUR CONTENT IN COAL

• Sulfur is oxidized in the boiler and as a result produces \(\text{SO}_2 \) and \(\text{SO}_3 \) in the flue gas. \(\text{SO}_3 \) and \(\text{H}_2\text{O} \) combine in \(\text{H}_2\text{SO}_4 \) and \(\text{H}_2\text{O} \) are adsorbed on the surface of the fly ash particles at flue gas temps below 204° C (400° F).

• \(\text{SO}_3 \) is normally injected into the flue gas (after the air heater) in order to decrease resistivity.

• High \(\text{SiO}_2 \) and \(\text{Al}_2\text{O}_3 \) (levels greater than 85%) produce an acidic ash which impacts the effectiveness of \(\text{SO}_3 \) conditioning.
When is NH₃ Injection the Correct Choice?

• Acidic Fly Ash Chemistry (i.e. High Levels of Silica & Alumina > 85%)
• High Levels of Unburned Coal (Carbon) in the Fly Ash
• Agglomeration of Fine Particulate
• Control of Rapping Re-Entrainment Losses
• Excessive Flue Gas Velocities

Why add NH₃ to the Flue Gas?
Improved utilization of SO₃, forming ammonium bisulfate; more effective resistivity control.
DFGC - KEY DESIGN PARAMETERS

A dual flue gas conditioning (DFGC) system simultaneously and independently injects two conditioning agents, SO₃ and NH₃, into the flue gas.

- Coal and Ash Analysis
- NEP Modeling
 - Injection Dosage Curve
 - Performance Guarantee
- CFD Modeling (Operational)
- Customized Equipment Engineering and Delivery
IMPORTANCE OF MODELING FLUE GAS TEMPERATURES AHEAD OF ESP
BIASING OF SO3 INJECTION PROBES

SO3 Injection Modeling

SO3 Concentration (ppm)
DUAL FGC TEST SYSTEM INSTALLATION

Nanticoke 8x500 MW, Unit 2
NANTICOKE UNIT 2
OPACITY – NO FGC

LOW SULFUR 50/50
TEST 43
SO3 OFF
NH3 OFF
NANTICOKE UNIT 2
OPACITY – SO₃ INJECTION

LOW SULFUR 50/50
TEST 35
SO₃ 5.5 ppm
NH₃ OFF
NANTICOKE UNIT 2
OPACITY – DUAL INJECTION

Nov 15, 1988
512 MW
NH₃ = 17 ppm
SO₂ = 17 ppm

LOW SULFUR 50/50
TEST 33
S03 17 ppm
NH3 17 ppm
Stack Emissions

(LOW SULFUR COAL WITH DUAL FGC)

<table>
<thead>
<tr>
<th></th>
<th>Test No.</th>
<th>14-1</th>
<th>14-2</th>
<th>15-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₃ Injected (ppmV)</td>
<td></td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>SO₃ Exiting Stack (ppmV)</td>
<td></td>
<td>1.8</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>NH₃ Injected (ppmV)</td>
<td></td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>NH₃ Exiting Stack (ppmV)</td>
<td></td>
<td>0.13</td>
<td>0.04</td>
<td>0.16</td>
</tr>
</tbody>
</table>
MOLTEN SULFUR ON DEMAND (MSD)
SO3 FGC EQUIPMENT

- Best suited for a wide range of applications.
- More expensive feedstock option than molten sulfur.
- Proven, reliable technology offered exclusively from Fuel Tech, Inc.
SO3 FGC SYSTEM – 700 MW UNIT
ANHYDROUS AMMONIA BASED FGC EQUIPMENT

- Anhydrous NH₃ feedstock requires least energy input
- Anhydrous system utilizes uninsulated carbon steel piping for transport to the injection probes for lowest cost installation
- 2,000 gallon tank is under the threshold for Risk Management Plans and intensive safety requirements
ANHYDROUS AMMONIA STORAGE TANK & DILUTION SKID - 2X500MW UNIT
Project Overview

- Original ESP dust concentration were 25 g/Nm³ for Unit 1 and 15 g/Nm³ for Unit 2 at inlet, and 116 mg/Nm³ for Unit 1 and 85 mg/Nm³ for Unit 2 at outlet
- FGC performance requirement to improve ESP outlet concentration to less than 20 mg/Nm³ for Unit 1 and 2

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>ZhunDong Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Type and Size</td>
<td>Two 330 MW tangentially-fired pulverized coal units</td>
</tr>
</tbody>
</table>

Fuel Tech Solutions / Approach

- Challenging high dust resistivity conditions prevented client ESPs with large collecting areas to meet latest environmental regulatory goal of 30 mg/Nm³
- Fuel Tech designed FGC system to enhance customer’s electrostatic precipitator performance and successfully meet client requirements
- Dual SO3/NH3 flue gas conditioning system
- Project completed in 2014
- With Fuel Tech’s FGC solution, Unit 1 achieves 18 mg/Nm³, Unit 2 achieves 17 mg/Nm³ at ESP outlet
SO3 FGC PROGRAM CASE STUDY
CHINA SHENHUA ZHUNGEER POWER PLANT

Zhungeer Power Plant 2x300MW,
Unit 2 ESP Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>Eff., %</th>
<th>ESP Outlet Emissions, mg/Nm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline w/o SO3</td>
<td>99.67%</td>
<td>73.14 mg/Nm3</td>
</tr>
<tr>
<td>NEP Model Project w/ SO3</td>
<td>99.94%</td>
<td>14.92 mg/Nm3</td>
</tr>
<tr>
<td>325 MW Test Avg. w/ SO3</td>
<td>99.95%</td>
<td>10.82 mg/Nm3</td>
</tr>
</tbody>
</table>
ESP PERFORMANCE AND IMPROVEMENT STRATEGY EVALUATION – CASE HISTORY

Scope of Work

• ESP operational audit
• Control optimization
• ESP internal inspection
• Computational Fluid Dynamics (CFD) modeling of flue gas flow distribution
• Numerical ESP Performance (NEP) modeling of upgrade option and performance

Achieve Result

• Optimize Automatic Voltage Controllers control parameter to maximize power input to ESPs
• Optimize rapping control to mitigate high opacity spikes
• Identify measures and mechanical modifications to increase dust collection efficiency by improving flue gas flow distribution and decrease opacity by preventing re-entrainment of fly ash
Numerical ESP Performance (NEP) Modeling

- Analyze different cases of coals and coal blending scenarios. Determine the importance of total Fuel Flexibility at a given power station

- Predict ESP outlet PM emission levels and stack opacity

- Compare the existing ESP performance with different mechanical upgrade options and/or with the combination of SO3 FGC, DFGC, and HFPS technologies in service.

Recommend the most cost effective solution for ESP performance enhancement by incorporating the combined results from the ESP internal inspections, the operational audits, CFD modeling services and NEP modeling results.
Slagging and Fouling Control in the Coal Utility Industry
TIFI® TARGETED IN-FURNACE INJECTION™

TIFI nozzle injecting reagent
SLAG/FOULING CONTROL WITH TIFI

• **Targeted injection towards problem areas**
 - Reagent slurry injection
 - Small quantities of chemical (sub-stoichiometric for deposit control)

• **Deposit control and SO\textsubscript{3} plume mitigation**
 - Furnace to stack
 - Minimum operating temperature (MOT) issues with SCR

• **Increased unit efficiency**
 - Increased unit availability/higher MW per ton of fuel fired
 - Lower operating costs
 - Optimized heat transfer
 - CO\textsubscript{2} reduction

• **Fuel flexibility**
 - Ability to fire opportunity fuels with lower ash fusion temperatures
 - Co-firing applications
 - Slagging and fouling control with biomass fuels

• **Safety**
 - Eliminate explosive de-slagging
 - Eliminate slag falls that can result in boiler damage/tube leak
 - Eliminate risk to personnel exposed to clinkers
KEY TECHNOLOGIES TO CONTROL SLAGGING & FOULING

- Deposit Analysis
- Computational fluid dynamics (CFD)
- Injection technology
- Chemical technology
- Combustion expertise
EFFICIENT CHEMICAL DELIVERY TO PROBLEM AREAS

Particle calcination/disintegration

Furnace Injection

superheated H_2O

Reagent Particle
($d_{0.5} = 1.6-2.3 \ \mu m$)

Reagent Particles
($d_{0.5} = 0.06-0.3 \ \mu m$
(300-30,000 particles)

Distribution/reaction

Flue Gas Flow

Deposits embedded with reagent particles
IMPACT ON DEPOSIT PHYSICAL PROPERTIES

Scanning Electron Microscope (SEM) at 5.5X magnification

NOTE: pore size comparison

Deposit without TIFI®
Numerous small pores with thick walls

Deposit treated with TIFI®
Larger pores with thin walls
HARD SLAG FORMATION CONTROLLED

Before TIFI® treatment
- Tenacious
- Less pores and smaller
- Hard
- More dense

After TIFI® treatment
- More pores
- Less dense
- Softer
- Easier to crumble/remove

Example of friable slag created via TIFI use

Furnace side

Wall side

Business Segme
CFD MODELING DESIGN PROCESS

- **Design**: burn coal with $T_{\text{fusion}} = 1370^\circ$ (Green)
- **Goal**: burn coal with $T_{\text{fusion}} = 1150^\circ$C (Blue)
- Less costly fuel (Blue)
- Ability to co-fire different fuels
 - Biomass
 - Oil
 - Coal
 - RDF
 - TDF

![Diagram showing heating elements and fuel types](image)
INJECTION MODELING DESIGN PROCESS

- Fuel analyses/combustion/laboratory data used to predict problem areas
 - Visual inspections are used to validate/tune model
- TIFI program is designed to specifically target problem areas
OPTIMIZING THE INJECTION STRATEGY

Right Half Furnace Model
Upper Furnace Chemical Coverage

20 injector array

14 injector array
TIFI® PROGRAM EQUIPMENT

Reagent tanks

Injectors

Compressed air
Q<0.75 m³/min/injector; P >6 bar

Low alkali water
100–120 l/h/injector; P >2 bar

Manifolds

Re-circulation module

Chemical metering module

Chemical reagent

FUEL TECH
Technologies to enable clean efficient energy
IMPACTS OF TIFI® ON SOOTBLOWING (800 MW UNIT)

Unit 2 - Treated

Unit 3 - Untreated

TIFI® Program Case Study
Basin Electric – Leland Olds Generating Station, Unit 2

Performance Improvements
- Over 58% Run Time > than 400MW (Compared to 29% Before Program)
- 45% Production Gain
- 120-180 Btu/kWh Decrease in Heat Rate
- Eliminated One Annual Cleaning Outage and Remaining Outages Shortened
- Reduced Sootblowing, Rodding, Shot Gun Cleaning & Blasting
- 5% decrease in ID fan power
- A 15 – 18% decrease in NOx emissions

Design and Implementation
- Computational Fluid Dynamics Model of Boiler
- Optimized Chemical Feed Program using TIFI MG™
- Soot Blower Optimization Team
- Injection Rate Adjusted Based on Incoming Coal Properties
- 10-Point Boiler Grading Scale Based on Slag Surveys
These identical 900 MW units burning PRB were forced to take nightly derates for deslagging as evidenced by this graph of load over a 4 day period. Unit 4 at this point was treated with the Fuel Chem TIFI program and shifted to load demand following instead of the previous forced derate for deslagging. Unit 3 remained untreated and continued the required derates. The moving average lines for each unit illustrate the ability of Unit 4 to deliver an additional 80-100 MW on a sustained basis avoiding substantial purchased power costs.
TIFI® TREATMENT SUMMARY

- Fuel flexibility
- Availability gain
- Efficiency gain
- Maintenance benefit
- Environmental Improvement

Furnace After TIFI® Treatment

Initial Chemical Feed TIFI Injection After 24 Hours
Questions & Answers