Layered NOx Reduction Technologies for Effective NOx Control

John M Boyle, Ph.D.
American Coal Council
January 27, 2011

Fuel Tech, Inc.
Warrenville, IL, USA
Stamford, CT, USA
Milan, Italy
Beijing, PRC

Fuel Tech is an integrated technology company providing advanced engineering solutions to enable clean efficient energy.
Countries where Fuel Tech does business: USA, Argentina, Belgium, Brazil, Canada, Chile, China, Colombia, Czech Republic, Denmark, Dominican Republic, Ecuador, Estonia, France, Germany, India, Italy, Jamaica, Mexico, Poland, Portugal, Puerto Rico, Romania, South Korea, Spain, Taiwan, Turkey, United Kingdom.

NOx Regulations

- Clean Air Interstate Rule
 - 0.15 lb/MMBtu for 2009
 - 0.12 lb/MMBtu by 2015
- Transport Rule (final by mid-2011)
- Carper/Alexander Legislation (2011?)
- Boiler MACT Rule
 - Sources < 250MMBtu
 - Final Rule by April 2012
- Other State Options and Rules
Reducing NOx Emissions

- Fuel Switching
- Combustion Tuning
- Combustion Controls
 - Low-NOx Burners
 - Over-Fired Air
- Post-Combustion Controls
 - Selective Non-Catalytic Reduction
 - Fuel-Rich Reducing Environment
 - Fuel-Lean Oxidizing Environment
 - Selective Catalytic Reduction

NOx Reduction Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital >NOx Red%</td>
<td>NH3 Slip ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>>NOx Red% Low NH3 Slip</td>
<td>High Capital SO₃ Oxidation</td>
</tr>
</tbody>
</table>
Reducing NOx Emissions

- How to Capture the Strengths?
- How do we expand the Limits?
- Are there Synergies?
- Customized Solutions:
 - Emission Requirements
 - Existing NOx Controls
 - Total Site Emissions: GHG, CO, etc.
- A Complete Site Perspective

A Complete Site Perspective

- Coal Specifications
- Combustion Systems: Burners & OFA
- Furnace Slag / Fouling
- Heat Rate and Furnace Efficiency
- Unit Capacity Factor
- Excess O2 / LOI
- Post-Combustion NOx Control
- SO2 and SO3
Advanced SCR - ASCR™

- A customized solution
- Advanced SCR reactor
 - Retrofit in existing footprint
 - Rapid Mixing and Flow Conditioning
- Provides Quality SCR NOx Control
 - LNBs and OFA
 - Advanced SNCR Application
 - 75%-85% NOx Reduction
 - Lower Capital Cost
 - Variable Operating Cost

Layered NOx Reduction

- Combustion NOx Control
 - Combustion Tuning
 - Low-NOx Burners
 - OFA
- Post-Combustion NOx Control
 - Rich Reagent Injection
 - Selective Non-Catalytic Reduction
 - Selective Catalytic Reduction
Combustion and LNB

- Combustion Tuning
 - Secondary Air Flow Testing
 - Coal Flow Testing
- Low-NOx Burners
 - Coal, Oil, Natural and Refinery Gases
 - Reduce O2 in the High-Temperature Flame
 - Rapid Heating to release volatiles
 - Provide Mixing to Complete Combustion
- OFA Systems
 - Reduce O2 in the Combustion Zone
 - Design an Efficient CO Burnout Zone

ULTRA LOW NOx BURNER

- 5:1 Turn Down
- Coal, Oil, Natural and Refinery Gases
- Reduce O2 in the High-Temperature Flame
- Rapid Heating to release volatiles
- Provide Mixing to Complete Combustion
- Design an Efficient CO Burnout Zone
Baseline Furnace Model

CO Profiles in Baseline Furnace
Flow Traces from New OFA
CO Profiles in Low-NOx Furnace

Controlling Risks LNB/OFA:

- Custom Fit to the Application
 - CFD Modeling
 - Physical Modeling
- Minimize Impact on Operations
 - Limited CO
 - Fuel Flexibility
 - More Balanced Furnace Conditions
- Guaranteed Performance
Low-Nox Burner OFA System

Effective Combustion!
Effective NOx Reduction
Effective CO Control
Room for SNCR

Post Combustion Controls
Selective Non-Catalytic Reduction

Urea SNCR Chemical Reaction

\[2\text{NO} + \text{NH}_2\text{-CO-NH}_2 + \frac{1}{2}\text{O}_2 \rightarrow 2\text{N}_2 + \text{CO}_2 + 2\text{H}_2\text{O}\]

Ammonia SNCR Chemical Reaction

\[2\text{NO} + 2\text{NH}_3 + \frac{1}{2}\text{O}_2 \rightarrow 2\text{N}_2 + 3\text{H}_2\text{O}\]
SNCR Technology Overview:

- In-furnace, Post-combustion Control
 - Injection of Aqueous Urea Droplets
 - 25 – 70% NOx Reduction
 - Many Injection Options:
 - Compressed Air
 - Mechanical
 - Multiple Nozzle Lances – Water Cooled
 - Package Boilers to Utility Boilers
 - Effective on All Fuels and Blends

SNCR Process Application

- Computational Fluid Dynamics
- Chemical Kinetics Model
- Injection Model
$SNCR \, Temperature \, Window$

BL Nox = 0.47 lb/MBtu, CO = 250 ppm, NSR = 1.05

Chemical Release Temperature [deg F]

Final NOx (lb/MBtu)

NH3 Slip (ppm)

NOx = 0.30 (36% Reduction)

NOx = 0.20 (57% Reduction)

NOx = 0.14 (70% Reduction)

$SNCR \, Low-Temperature \, Surface$
NOx Reduction Contour

Optimized SNCR Performance
Controlling Risks SNCR:

- Carefully Target the Injection Zone
 - CFD Modeling
 - Field Assessments / Demonstrations
- Understand the Chemistry
 - Urea and ammonia Mechanisms
 - Ammonium Bisulfate Formation
- Refer to Experience Database
 - More Than 500 Applications
 - More Than 100 Utility Furnaces

Post Combustion Controls
Selective Catalytic Reduction

- NH3 and NO React over a Catalyst
 - 600F to 700F
 - Very High Reductions / Utilization
- Limitations
 - Capital Cost Modifications
 - Poisons and High Dust Issues
 - Temperature Limits: SO3 formation
 - Pressure Drop
Controlling Risks SCR:

- Lower the NOx Baseline
 - Decrease Ammonia Slip
 - Increase Performance of the SCR
- Utilize a Simple Single-layer SCR
 - Reduced Capital and Risk
 - Reduced SO3 and Pressure Drop
- Advanced Design
 - Best Available Flow Mixing
 - Uniformity of Gases at Catalyst Face

Lower the Baseline to Improve SCR Performance

![Graph showing NOx removal efficiency vs. NOx Inlet PPM](image)

Single Layer of Catalyst
ASCR - Advanced

- A Synergistic Layering of NOx Control
 ♦ SCR Levels of NOx Control
 ♦ Flexibility vs. Uncertainty
 ♦ Improved Operation of all Components
 ♦ Guaranteed Performance

♦ Does this introduce Risk?
Combining NOx Reduction Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital NOx Red%</td>
<td>NH3 Slip ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red%</td>
<td>High Capital SO\textsubscript{3} Oxidation</td>
</tr>
<tr>
<td></td>
<td>Low NH3 Slip</td>
<td></td>
</tr>
</tbody>
</table>

Retrofit Low-NOx Burner Installation

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital NOx Red%</td>
<td>NH3 Slip ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red%</td>
<td>High Capital SO\textsubscript{3} Oxidation</td>
</tr>
<tr>
<td></td>
<td>Low NH3 Slip</td>
<td></td>
</tr>
</tbody>
</table>
Moderate Combustion Modifications

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital NOx Red%</td>
<td>NH3 Slip, ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red%, Low NH3 Slip</td>
<td>High Capital SO$_3$ Oxidation</td>
</tr>
</tbody>
</table>

Conservative SNCR application

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital NOx Red%</td>
<td>No NH3 Slip, No ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red%, Low NH3 Slip</td>
<td>High Capital SO$_3$ Oxidation</td>
</tr>
</tbody>
</table>
Aggressive SNCR application

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital > Red%</td>
<td>NH3 Slip, ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red%, Low NH3 Slip</td>
<td>High Capital, SO₃ Oxidation</td>
</tr>
</tbody>
</table>

In-Duct or Small SCR Space

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital > Red%</td>
<td>NH3 is OK, Feed to SCR</td>
</tr>
<tr>
<td>Small SCR</td>
<td>More Red%, Low NH3 Slip</td>
<td>Mod Capital, SO₃ and Cost</td>
</tr>
</tbody>
</table>
Advanced SCR Application

<table>
<thead>
<tr>
<th>Technology</th>
<th>Reduction</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>30%</td>
<td>51%</td>
</tr>
<tr>
<td>SNCR</td>
<td>30%</td>
<td>66%</td>
</tr>
<tr>
<td>Small SCR</td>
<td>45%</td>
<td>81%</td>
</tr>
</tbody>
</table>

Layered NOx Solutions

- Utilize Optimal Technology Suite
- Customized to Reduce Risks
- Balanced to Reduce Costs
 - Capital vs. Operation Costs
 - Variations in Fuel and Capacity
- Best Possible Performance
 - NOx Reduction
 - Secondary Impacts (BOP)
Layered NOx Reduction Technologies for Effective NOx Control

John M. Boyle, Ph.D.
Sr. Director Technology Development
Fuel Tech, Inc.

jboyle@ftek.com