Meeting Emissions Mandates
Case Studies on Fuel Flexibility
Applications

American Coal Council
Implementing Fuel Flexibility Strategies

July 20, 2010

John M Boyle, Ph.D.
Fuel Tech, Inc.
Warrenville, IL, USA
Stamford, CT, USA
Milan, Italy
Beijing, PRC
Addressing Fuel Flexibility

- Heat Rate and Unit Capacity
- Key Emissions Concerns
 - Air Toxics, such as SO3
 - Opacity
 - CO
 - NOx
- Operational Concerns
 - LOI and Fan Limitations
 - Furnace Slagging
 - Corrosion under Slag Deposits

A Complete Site Perspective

- Fuel Handling: Mills
- Combustion Systems: Burners
- Furnace Slag
- Tube Corrosion
- Fouling Deposits
- Heat Rate and Furnace Efficiency
- Unit Capacity: Fuel Heating Value
- Excess O2 / LOI
- NOx Control Systems: SNCR and SCR
- SO2 and SO3
Case Studies

- SO3 Control at Santee Cooper
 - Cross Station – Fuel Switch
- Blending at Colorado Springs Utilities
 - Colorado Coal and PRB
- Advanced SCR
 - Wind-box to Air-Heater NOx Control

All Solutions are based Fuel Tech’s Advanced Modeling Technologies

Fuel Tech Process Application

- Computational Fluid Dynamics
- Detailed Chemical Analysis
- Injection Model
Fuel Tech Process Application

- Combustion Optimization
- Low-NOx Burners / OFA Systems
 - Coal, Oil, Natural and Refinery Gases
- Targeted In Furnace Injection
 - Slag and Fouling Control
 - SO3 Abatement
- Air Pollution Control
 - NOx, SO2 and SO3, CO

Santee Cooper Cross Station Units 1 & 2

- Eastern Kentucky Bituminous coal
- Unit 1 - 600 MW opposed wall fired
 - Staged combustion low-NOx burners
 - Addition of an SCR in 2003
- Unit 2 – 600 MW T-fired
 - Close-coupled Over-Fired Air
 - Addition of an SCR in 2003
SO$_3$ Related Opacity

- Sulfuric acid mist emissions
- SO$_2$ to SO$_3$ conversion
 - Lowest-oxidation Rate Catalyst
 - Particularly problematic for Unit #2
- Increased with high iron in the ash
 - Oxidation in the furnace
- Regulatory pressure to control

Fuel Tech Process Application

- The Complete Site Perspective
 - Combustion Optimization Services
 - Furnace Slag and Efficiency Analysis
 - Performance of the SCR
 - NOx Reduction
 - SO$_2$ => SO$_3$ Oxidation
 - Ammonium Bisulfate Formation
 - Toxic Emissions – SO$_3$, H$_2$SO$_4$
Fuel Switching

• New Coal in 2004
 • Increased Iron Load
 • 1 lbs/10^6 BTU vs. 0.6 lbs/10^6 BTU
 • Boiler Design: 0.56 lbs/10^6 BTU
 • Decreased Ash Fusion Temperature
 • 2000-2100°F vs. 2300°F
 • Boiler Design: 2500°F

• Slag removal with explosives
• LPA forced SCR on-line cleaning

Project Objectives

• Reduce SO₃ related Opacity
• Reduce popcorn ash and SCR fouling
• Reduce the coal-related slag and fouling issues
• Increase fuel flexibility
SO₃ Concentrations at High Load

Unit #2 SO3 Concentrations at 580 MW

SO₃-Related Opacity Controlled

Untreated Opacity TIFI Treated Opacity
TIFI-mg reduced SO$_3$ and H$_2$SO$_4$

- Lower Furnace Temperature
 - Decreased Oxidation Rate
- More Balanced Furnace
 - Reduced Excess Oxygen
- Reduced Slag and Iron Deposits
 - Less Catalytic Oxidation
- Direct Reaction with MgO
 - MgO + SO$_3$ => MgSO$_4$

TIFI Case Study Conclusions

- Allowed Fuel Blending
- Reduced SO$_3$ related opacity
- Reduced Total Toxic Release (TTR) by 20%
 - 35% reduction in H$_2$SO$_4$
- Reduced outage cleaning time more than 50%
- Increased MW capability by 44.5 MWe
- Increased boiler efficiency by 0.65%
Program Results at SC Cross

- Return on Investment
 - Greater than 4 : 1

- EUEC Conference Proceedings, Jan 2008
 - Santee Cooper: Davis, Toombs
 - Fuel Tech: Boyle, Hermanas, Benisvy, Schulz

Colorado Springs Utilities
Martin Drake Station

- Unit 7 - 142 MW Wall-Fired
- Colorado Coal and PRB Coal
 - Successful Blend at 10% PRB
- Issues with Higher PRB Blends
 - De-rates and Forced Outages
 - Blast Cleaning and Tube Leak Repairs

So What is the Problem?
Coal Slagging Indices

- **Colorado**
 - $\frac{Fe_2O_3}{(CaO+MgO)} = 0.86$ → Lignitic Ash
 - $R_s = \frac{(Max HT)+4(Min IT)}{5} = 2576$ → Low

- **PRB**
 - $\frac{Fe_2O_3}{(CaO+MgO)} = 0.24$ → Lignitic Ash
 - $R_s = \frac{(Max HT)+4(Min IT)}{5} = 2104$ → Very High

Colorado Coal Ash Softening Isotherms

- 2,670°F (Oxidizing)
- 2,595°F (Reducing)
PRB Coal Ash Softening Isotherms

- 2,200°F (Oxidizing)
- 2,120°F (Reducing)

TIFI Program Results at CSU

- Drake Station, Unit 7, 142 MW Wall-Fired
- 5 Month Baseline: December 2007 – May 2008
 - Averaged 10% PRB Coal
- 5 Month TIFI Test: December 2008 – May 2009
 - PRB Blend Increased to 50% with TIFI
 - Waterwall and SH Absorptions Maintained
 - SH & RH Steam Temps Maintained at 1,005°F
 - Slag Shed Derates and Forced Outages on Same Pattern as Baseline Colorado Coal
 - 18% Increase in Oper Time Above 130 MW
TIFI Program Results at CSU

- Financial Analysis
 - Colorado Coal at $50/ton, Delivered
 - PRB Coal at $21/ton, Delivered
- Return on Investment
 - 420%

ASME 2010 Power Conference
- CSU: Towell, Martinez, Hightower, Maxey
- Fuel Tech: Snow, Gonzalez, Rians

ASCR - Advanced

- A Synergistic Layering of NOx Control
 - SCR Levels of NOx Control
 - Flexibility vs. Uncertainty
 - Improved Operation of all Components
 - Guaranteed Performance

- Does this introduce Risk?
Combining NOx Reduction Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital NOx Red%</td>
<td>NH3 Slip ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red% Low NH3 Slip</td>
<td>High Capital SO₃ Oxidation</td>
</tr>
</tbody>
</table>

Retrofit Low-NOx Burner Installation

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital NOx Red%</td>
<td>NH3 Slip ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red% Low NH3 Slip</td>
<td>High Capital SO₃ Oxidation</td>
</tr>
</tbody>
</table>
Moderate Combustion Modifications

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital NOx Red%</td>
<td>NH3 Slip ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red% Low NH3 Slip</td>
<td>High Capital SO₃ Oxidation</td>
</tr>
</tbody>
</table>

Conservative SNCR application

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital NOx Red%</td>
<td>No NH3 Slip No ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red% Low NH3 Slip</td>
<td>High Capital SO₃ Oxidation</td>
</tr>
</tbody>
</table>
Aggressive SNCR application

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital > Red%</td>
<td>NH3 Slip ABS</td>
</tr>
<tr>
<td>SCR</td>
<td>NOx Red%</td>
<td>High Capital SO₃ Oxidation</td>
</tr>
<tr>
<td></td>
<td>Low NH3 Slip</td>
<td></td>
</tr>
</tbody>
</table>

In-Duct or Small SCR Space

<table>
<thead>
<tr>
<th>Technology</th>
<th>Strength</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>Low Capital and Operating</td>
<td>Combustion, Corrosion, CO</td>
</tr>
<tr>
<td>SNCR</td>
<td>Low Capital > Red%</td>
<td>NH3 is OK Feed to SCR</td>
</tr>
<tr>
<td>Small SCR</td>
<td>More Red%</td>
<td>Mod Capital, SO₃ and Cost</td>
</tr>
<tr>
<td></td>
<td>Low NH3 Slip</td>
<td></td>
</tr>
</tbody>
</table>
Advanced SCR Application

<table>
<thead>
<tr>
<th>Technology</th>
<th>Reduction</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-NOx Burners</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Combustion Mods / OFA</td>
<td>30%</td>
<td>51%</td>
</tr>
<tr>
<td>SNCR</td>
<td>30%</td>
<td>66%</td>
</tr>
<tr>
<td>Small SCR</td>
<td>45%</td>
<td>81%</td>
</tr>
</tbody>
</table>
Layered NOx Solutions

- Utilize Optimal Technology Suite
- Customized to Reduce Risks
- Balanced to Reduce Costs
 - Capital vs. Operation Costs
 - Variations in Fuel and Capacity
- Best Possible Performance
 - NOx Reduction
 - Secondary Impacts (BOP)

Meeting Emissions Mandates
Case Studies on Fuel Flexibility Applications

John M Boyle, Ph.D.
July 20, 2010